
Online backup and versioning in log-structured file
systems
Ravi Tandon*

Student Author*
Depatment of Computer Science and Engineering

Indian Institute of Technology Guwahati
Email: r.tandon@alumni.iitg.ernet.in

Abstract—With the advent of large and fast storage
devices (eg. SSDs, Flash Disks) file system sizes have
grown beyond bounds. Large volume of dynamically
changing data makes it difficult to store data on the
fly. Consistent backup ensuring integrity and correct-
ness of data is of utmost important. Offline backup
schemes result in heavy losses due to large down time.
Online backup schemes offer weak consistency guaran-
tees. Transactional file systems offer strong guarantees;
however, they hinder the normal functioning of user
applications. This results in transaction aborts and
suboptimal performance. This work proposes an online
backup approach that circumvents user transaction
aborts due to the backup process in a transactional
file system. Conventional serialization approaches en-
sure consistency with transaction aborts. This work
defines a concept “Conflict Dependence” that helps
identify conflicts within backup and user transactions.
An efficient implementation within a log-structured file
system (LFS) is proposed. It does not require aborts
because of the backup process. The backup scheme
extends naturally to a versioning in a LFS.

Index Terms—Online backup, Log-Strucuted File
Systems, Consistency

I. Introduction
Software bugs, system crashes, user application failures,

etc. are some of the reasons due to which file systems may
lose essential data and become inconsistent. Therefore,
it becomes imperative for large organizations to keep a
keep a reliable image of file system data. The process of
storing dependable versions of file system data is referred
to as “backup”. Moreover, system administrators require
systems to be up all the time. As disk sizes continue to
grow at rates of 50% per year for the next decade file
system sizes are expected to grow to multiple terabytes [1].
Disk and tape read speeds grow only at 20%. Hence, of-
fline backups will become even more expensive. Therefore,
active consistent backup becomes a primary requirement
for large businesses.

Hitherto existing techniques such as dump [2], tar
[3], cpio [4] etc. build a consistent image of file system
only in an offline mode. These techniques employ a two
phase backup approach. These are scan and dump. These
approaches do not guarantee reliability of data backup
(in online mode) primarily because the backup process
does not serialize with other processes. Movement of files,

deletion of directories, etc. are some of the common pitfalls
of an online backup scheme. If any of the files is moved
during the backup process, then depending on the state of
the file system, the backup process may not encounter the
moved file or may read that file more than once resulting in
an inconsistent image of the file system. For eg. Consider
two directories A and B and a file C. The file is moved
from directory B to A. If the backup process first copies the
directory A and then B then it might not copy file C. This
can lead to inconsistency in the data that has been backed
up. Backup programs need to be careful of special signals
such as SIGSEGV, when files get truncated, else they
might backup stale data which may even cause security
breach [5]. Other file modifications such as file creation,
deletion, compression etc. may cause inconsistencies.

This work proposes an online versioning file system
design for log-structured file systems. Log-structured file
systems [6] store data in the form of a continuous log
within the file system. Copy-on-write semantics of a log-
structured file system extends naturally to versioning in
file systems [7]. This work, OBVLFS (Online backup and
versioning in log- structured file systems), proposes a
technique that ensures efficient serialization of an active
backup process with user transactions. It assumes the exis-
tence of a transactional file system. The backup algorithm
ensures that user transactions do not abort due to serial-
ization with the backup process through the identification
of conflict dependent transaction. Transactions which are
inconsistent with the current backup are identified by
the transactional semantics and metadata bookkeeping.
Any changes made by them are not copied to the backup
storage. Backup and user transactions can operate con-
currently on a file. Each file inode stores various versions
in the form of snapshots. Backup and user transaction
operate on different copies and hence remain isolated even
for a single file. Such a scheme, therefore, avoids the
overhead of restarting either the backup process or the
user transaction. This results in performance improvement
over traditional backup approaches.

The rest of the work is organized as follows: Section
II focuses on traditional backup schemes, categorization
of backup processes and their drawbacks. Section III
describes the system model, requirements of a backup



scheme, implementation details, proposed backup protocol
and contributions of this work. Section IV concludes the
work with ideas on future implementation and scope of
the project.

II. Related Work
Multi-process applications require a large number of

concurrent transactions to proceed in a consistent manner.
Supporting transactions ubiquitously thus becomes an
inherent requirement of modern day systems [8]. Tradi-
tional backup schemes such as point-in-time copy [9] and
Dell/EMC’s SnapView [10] have focused predominantly on
the reduction of time required for the backup to complete.
Consistency is guaranteed only when the backup process
runs in an offline mode. This incurs losses due to system
down time. Hence, online backup schemes were developed
to improve system performance.

Online backup schemes, predominantly, use three ap-
proaches to maintain consistency and integrity of data viz.
locking, detection of file movement and copy-on-write [5].
Locking prevents modification of files, directories during
the period they are being backed up. However, a strict
locking scheme reduces concurrency and thus degrades
system performance. Detection of file movement is based
on the comparison of file modification time before and
after backup. However, it requires post backup consistency
checks. These checks require overhead of maintaining a
database of files, and may not be very accurate. Copy-on-
write is a scheme that makes shadow copies of data mod-
ified. The previous version remains available for backup
while the current version of data is being modified. Point-
in-time copying [9], [10] provides copy of large amounts
of data in a very small period of time. Split-mirror,
changed-block and concurrent backup are three different
classes of implementation of point-in-time copy of file
system data. Split-mirror copies the data to be backed up
before; changed-block is similar to copy-on-write, where
blocks are written to a different location when they are
modified. Concurrent backup schemes monitor data that
has been and physically copies the data in background.
Split-mirror requires planning in advance, duplication of
data; changed-block and concurrent backup do not provide
enough guarantees of consistency across different files. File
system backup techniques include read-only backup of the
current file system data. This data is copied to a backup
tape. Andrew file system [11], Petal [12], Spiralog [13]
etc. snapshot file system state before copying the data.
Spiralog [13] is a file based, incremental backup scheme.
Data is stored in the form of structures called savesets on
the disk. Savesets are then physically copied to backup
tapes in the form of savesnaps. Lack of inter-volume data
consistency and the absence of support for consistent
backup in the event of collision of applications with the
backup are some of the drawbacks of Spiralog LFS. Any
application that has to write data to the backup has to
commit data separately to the snapshot. This requires

backup specific implementation within each application.
Dell’s PowerEdge servers use Volume Shadow Copy Ser-
vice (VSS) [14] which reduces time and complexity of
backup through a snapshot framework. Another approach
of data backup is disk shadowing [15], which saves data
simultaneously to two disks. Extra hardware cost is a
major drawback of such a scheme.

Other schemes employ continuous backup such as in
unitree. Unitree [16] employs a continuous backup scheme,
where files are backed up within a threshold time after
they have been modified. The transactional semantics
are weakened by regular purging of files from caches
to disk. Legato Networker [17] employs application level
consistency semantics. These consistency semantics are
not generic enough for extensive for different applications.
Other file systems such as IBM’s ADSM [18] provide
different levels of consistency during backup. It provides
four modes viz. static, shared static, shared dynamic,
dynamic backup mode. The static mode allows backup of
only files to which no modification is taking place whereas
the dynamic mode cannot guarantee consistency.

Calton Pu [19] discusses an online backup approach
that guarantees complete consistency for database entities.
Each database entity is marked either white or black
depending on whether the backup process has read it
or not. Any transaction that writes on entities of two
different colors (called a “gray” transaction) is aborted
as it cannot be serialized with the backup process. The
scheme is limited only to databases and restart of “gray”
transactions consumes system resources and is inefficient.
Lipika Deka et.al. [20] propose a concurrency control
protocol mutual serializability for backup transaction. A
backup is consistent as long as the backup transaction is
mutually serializable with all other transactions. One of
the major drawbacks of this approach is that transactions
which read from already backed up files and subsequently
write to non-backed up files are aborted for consistency.
This work proposes an approach that avoids restart of any
transaction by identifying a conflict dependent set (refer
to subsection III-B) of transactions and by storing the
previous versions of file’s data in the log.

III. System Model
This work considers a transactional model of file system.

Each transaction consists of a set of actions. Each transac-
tion starts with txn_beg() call and ends with a txn_end()
system call. File system transactions consist of read and
write accesses to files. The backup process reads data from
the file system in cycles. Each cycle forms a new version of
the file system data. Each cycle constitutes a single trans-
action. The backup process performs only read operations
on all the objects of the file system. Traditional online
backup schemes abort user transactions on a conflict with
the backup transaction [20], when the user transaction fails
to serialize with the backup transaction. User transaction
aborts result in poor performance of applications. This



scheme avoids these aborts by making use of copy-on-write
nature of a log-structured file system. A log-structured file
system has a shadow copy of each page being modified.
This shadow copy is used by the backup process during
the backup thus avoiding transaction aborts and making
the system much more performant.

A. Backup Requirements
The requirements of a backup process are as follows:
1) The backup process must cause the least amount of

interference possible to user applications.
2) The backup process must use a small fraction of

system’s resources.
3) The backup copy of file system must be consistent.

B. Terms and Definitions
This subsection defines terms and definitions which are

essential to understand the backup protocol.
• Post Backup Data - Data written to a file which has

already been backed up in the current cycle is called
post backup data. This data will be backed up in the
next cycle after the cycle in which the transaction
that has written/modified it finishes.

• Conflict Dependency - Conflict dependency is a re-
lationship between two transactions (TA, TB), where
TA writes post backup data to a file F and TB reads
it. A transaction (TC) that writes post backup data
to a file has a reflexive relationship (i.e. it is conflict
dependent on itself).

• Conflict Depender Transaction - A transaction (TB)
that reads post backup data is a conflict depender
transaction. It depends on the transaction which has
written it.

• Conflict Dependee Transaction - A transaction (TC)
that has written/modified post backup data is called
a conflict dependee transaction. The transaction is
a also a conflict depender, where the conflict depen-
dency relationship is reflexive.

• Conflict Dependent Transaction Set - The set of all
transactions which are either conflict dependees or
conflict dependers constitute the conflict dependent
transaction set. These transactions are also called
conflict dependent transactions.

• Primary Conflict Dependent Transaction - A trans-
action (TA) that writes/modifies post backup data is
called a primary conflict dependent transaction.

Eg. 1 Suppose, R1(A) represents an action, where R
denotes a read operation, A is a file system object and
1 denotes transaction identifier. Transaction identifier B
denotes a backup transaction. Consider a schedule as
follows: RB(A), W1(A), R2(A). Transaction 2 is a con-
flict depender transaction as it has read data written by
transaction 1 which will not be backed up in the current
backup cycle. Transaction 1 is a primary conflict dependee
transaction.

C. Implementation Details
This subsection outlines the implementation details

of the backup protocol along with the necessary data
strucutres. Each file’s inode contains a version number
that identifies its backup version. The backup version
of a file is the version of the last backup cycle that
copied it. The file system maintains a global structure
that identifies the version of the current backup cycle.
These two structues are used by a transaction to judge
whether it is a conflict dependent transaction. A file whose
backup version identifier is lesser than the current backup
cycle’s version has not been backed up in the current cycle.
Whenever a transaction modifies a file that has already
been backed up, it identifies itself as a primary conflict
dependent transaction. The file system maintains a global
list of all the transactions. Each transaction structure
stores the following information:

• transaction identifier - It uniquely identifies each
transaction.

• status bit - It identifies whether a transaction is active
or finished.

• conflict status bit - It identifies whether a transaction
is conflict dependent or not.

• list of modified file structures - Each transaction
stores a list of all the files that it has modified. Along
with the file inode number, the backup version of the
file at the time of modification is also stored.

After the completion of a transaction if the transaction
remains a non-conflicting transaction then it updates the
inodes of all the files that it had modified. The file system
maintains two maps. They are also called dependency
maps. They are:

1) Depender-dependee map - It maps the set of de-
pendee transactions that each depender transaction
depends upon. This map is used to identify whether
a transaction is conflict dependent or not. Every
transaction whose dependee set is empty becomes
a non-conflicting transaction.

2) Dependee-depender map - It maps every dependee
transaction to the set of transactions that depend
upon it. Whenever a transaction becomes non-
conflicting, its entry is removed from this map. The
transaction is also removed from the dependee set of
each of its depender transactions.

When the backup process completes, all the transactions
that have completed become non-conflicting transactions
(refer to subsection III-E). The entry corresponding to
such transactions is removed from the dependee - depender
map. Each depender transaction removes the dependee
from its record in the depender-dependee map. After, this
cleanup process, if the dependee list for a depender trans-
action is empty, it becomes a non-conflicting transaction.
This gives rise to a cascade effect.

In traditional log-structured file systems each inode has
a tnode tree that maps logical pages to physical on-disk



pages. This is stored either on disk [6] or built on the
fly (for Flash File Systems [21]). Our design considers the
latter approach. In this design, each node within this tree
has a list of pointers to on-disk pages. Our design provides
a configurable option of allowing as many versions of the
file system as required. This is done by providing a list
of pointers (backup list) to backup copies on disk. Each
backup pointer corresponds to a particular backup version
and provides different snapshots of file over time. This
model provides the flexibility to view changes over time
for a particular page. This feature is termed as time travel
[22] for file systems. Each entry in the tnode tree has at
least three different pointers in our scheme. They are:

1) Pointer to current copy - This is the latest copy of
a particular page. It may not be consistent with the
current backup cycle.

2) Pointer to current consistent copy - This the latest
copy of a particular page. It is consistent with the
current backup cycle. The backup transaction copies
this image to the backup disk.

3) List of pointers to backup copies - This is a list
that stores pointers to previous copies of a page.
This represents snapshots of the page at for various
backup cycles.

Besides, a snapshot map is maintained. It essentially stores
for each snapshot version, a list of pointers to the on-disk
inode structures.
D. Backup Protocol

1) Backup Protocol Setup: The file system is transac-
tional in nature [20]. Each transaction is allocated a unique
identifier by the file system. They are incremental in
nature. Transactions have to be serialized with the backup
process for a consistent backup copy. User transactions
implement strict two phase locking [23]. Implementing
strict two phase locking for backup process would imply
stopping all the user transactions for a certain period of
time. Deka et.al. [20] propose a novel concurrency con-
trol protocol, Mutual Serializability (MS), that serializes
the backup process in a consistent manner. However, it
requires user transaction aborts. Our protocol improves
MS and allows concurrent backup of a file as it is being
modified. The hypothesis is that backing up writes of any
conflict dependent transaction leads to inconsistency in
the backup copy. In the preceding example (example 1,
refer subsection III-B), any writes of transaction 1 or 2
should not be backed up because of the following reasons:

1) Transaction 1 has written post backup data to file A.
This data will be backed up in the next backup cycle.
Hence, transaction A is a primary conflict dependent
transaction and any modifications made by it are
should not be saved to the backup disk.

2) Transaction 2 has read post backup data. Any modi-
fications made by transaction 2 should not be copied
back to the backup disk, as they might depend on
post backup data.

The backup process runs as a separate process in the
background. Modifications made by the conflicting set
of transactions are not copied to the backup disk. The
backup process reads every file and backs up those copies
of pages of a file that have been written to the disk by
non-conflicting transactions. This makes identification of
conflicting set of transactions imperative. Before reading
a file, the backup process acquires a backup lock. Only
those transactions that have a backup lock can modify
the pointers to the current consistent copies of pages of a
file.
E. Identification of Conflict Dependent Transaction Set

The backup protocol identifies the set of conflict de-
pendent transactions. The set of conflicting transactions
includes:

• All those transactions that have not finished yet
belong to the set of conflicting transactions. When a
transaction starts, its conflict-status bit is set to 1 (de-
noting it is conflict dependent). The rationale behind
this is that this transaction might write post backup
data subsequently. The data will not be backed up
leading to inconsistency.

• Any transaction that writes to a file, checks the
backup version of the file and compares it with the
current backup cycle’s version number. If they are
equal, the file is backed up already. The transaction
marks itself primary conflict dependent transaction
and necessary updates are made to the dependency
maps.

• Any transaction that reads from a file identifies the
transaction that had previously modified that part
of the file. In a log-strucutred file system each page
has metadata information about the transaction that
has written it to the disk. If a transaction reads
post backup data, it identifies itself as a depender
transaction and the transaction that had modified the
page as a dependee transaction. It also updates the
dependency maps.

When a transaction modifies a file, it updates the
pointer to the current copy of each individual tnode of file’s
tnode tree. It also stores the file’s inode number and cur-
rent backup version to the list of modified file structures.
When a transaction finishes, it may abort or commit. On
an abort all its entries from conflict dependence maps are
removed. If the transaction commits, then

• if the transaction has read post back up data, then it
remains a conflict dependent transaction.

• if the transaction has not read any post back up,
it checks whether it has written any post backup
data. The transaction acquires a backup lock over
each file that it has modified. A backup lock is an
exclusive lock that does not allow a file to be backed
up at the same time. If none of the files have been
backed up since the time the transaction modified
them, the transaction becomes a non-conflicting and



updates the tnode pointers to consistent copies of each
file within their respective inodes. The transaction
removes its entries from each of the dependency maps.

F. Transaction Collision Prevention
Due to copy-on-write property of log-structured file

systems, for each page that is modified a new copy is made
to the disk. Each page contains metadata information
about the transaction which modified it. The tnode tree
(a tree that maps each logical page to physical page on
disk) within the inode stores information about the last
consistent page and the new page on disk. The backup
process thus reads from the last consistent page on disk.
The modifications are made to the new page on disk.
Hence, the protocol prevents a collision between backup
process and the current transaction ensuring consistency,
efficiency (by avoiding transaction restart) and a higher
level of concurrency to the file system.

G. Contribution
Subsection III-A lays down three basic requirements of a

backup process. This subsection justifies how our protocol
satisfies these three requirements.

1) In our scheme, user applications and the backup
process can operate on a file simultaneously. Copy-
on-write and support for multiple versions of point-
ers to a page within the tnode tree improve the
concurrency level of file system operations.

2) The backup process, makes copies of the file’s in-
odes. Only the metadata needs to be copied. Snap-
shot based copy scheme requires a small fraction
of disk bandwidth for backup. System resources
are thud highly available leading to optimal per-
formance. Avoidance of user transaction aborts im-
proves throughput and system usage.

3) Identification of conflicting set of transactions (re-
fer subsection III-E) ensures serialization of backup
process and user transaction. This guarantees a con-
sistent backup image.

IV. Conclusion

This work presents an online backup scheme which
avoids any transaction aborts. Consistency of backup copy
of file system is maintained by deploying a transactional
file system, semantically grouping transactions into a set
of conflict dependent and non-conflicting transactions.
Traditional online backup schemes either guarantee weak
consistency or require user transaction aborts leading to
poor performance of user applications. This work makes
use of copy-on-write nature of a log-structured file system
and proposes an online backup scheme that allows backup
and user transaction to proceed concurrently and at the
same time ensures consistency. This work provides a
framework for constructing snapshots and storing them
as versions of the file system.

The work will be formalized to prove consistency re-
quirements of file system. A backup algorithm will be
implemented to measure its performance with the exist-
ing schemes. Metadata compression will be looked into
while storing backup versions of file system. Incremental
versioning will be incorporated to the backup algorithm to
eliminate storage of redundant data for successive versions
of file system.

References
[1] A. Chervenak, V. Vellanki, and Z. Kurmas, “Protecting file

systems: A survey of backup techniques,” in Proceedings Joint
NASA and IEEE Mass Storage Conference, vol. 3, 1998.

[2] dump, linux man page.
[3] tar, linux man page.
[4] cpio, linux man page.
[5] S. Shumway, “Issues in on-line backup,” in Proceedings of the

Fifth Large Installation Systems Administration Conference,
1991, pp. 81–87.

[6] M. Rosenblum and J. K. Ousterhout, “The design and
implementation of a log-structured file system,” ACM Trans.
Comput. Syst., vol. 10, no. 1, pp. 26–52, Feb. 1992. [Online].
Available: http://doi.acm.org/10.1145/146941.146943

[7] J. Ousterhout and F. Douglis, “Beating the I/O bottleneck: a
case for log-structured file systems,” ACM SIGOPS Operating
Systems Review, vol. 23, no. 1, pp. 11–28, 1989.

[8] D. Porter, I. Roy, A. Matsuoka, and E. Witchel, Operating sys-
tem transactions. Computer Science Department, University
of Texas at Austin, 2008.

[9] A. Azagury, M. Factor, J. Satran, and W. Micka, “Point-in-
time copy: Yesterday, today and tomorrow,” in NASA CON-
FERENCE PUBLICATION. NASA; 1998, 2002, pp. 259–270.

[10] R. Hou, S. Feibus, and P. Young, “Data Replication and Recov-
ery with Dell/EMC SnapView 2.0 and MirrorView,” 2003.

[11] J. Howard and C.-M. U. I. T. Center, An overview of the
andrew file system. Carnegie Mellon University, Information
Technology Center, 1988.

[12] E. Lee and C. Thekkath, “Petal: Distributed virtual disks,”
ACM SIGOPS Operating Systems Review, vol. 30, no. 5, pp.
84–92, 1996.

[13] R. Green, A. Baird, and J. Davies, “Designing a fast, on-
line backup system for a log-structured file system,” Digital
Technical Journal, vol. 8, pp. 32–45, 1996.

[14] A. Sankaran, K. Guinn, and D. Nguyen, “Volume shadow copy
service,” Power Solutions, March, 2004.

[15] J. Gray and D. Bitton, “Disk shadowing,” in VLDB, vol. 88,
1988, pp. 331–338.

[16] “UniTree Mass Storage System.” [Online].
Available: http://www.ncsa.illinois.edu/UserInfo/Resources/
Hardware/UniTree/

[17] “EMC NetWorker Unified Backup and Recovery Software.”
[Online]. Available: http://www.emc.com/domains/legato/
index.htm

[18] R. Heyt, M. Landzettel, R. Leins, F. Ramozzi, M. Standau,
and D. Talbot, Tivoli Storage Manager Version 3.7: Technical
Guide. IBM Corporation, 1999.

[19] C. Pu, “On-the-fly, incremental, consistent reading of entire
databases,” Algorithmica, vol. 1, no. 1, pp. 271–287, 1986.

[20] L. Deka and G. Barua, “On-line consistent backup in transac-
tional file systems,” in Proceedings of the first ACM asia-pacific
workshop on Workshop on systems. ACM, 2010, pp. 37–42.

[21] A. One, “YAFFS: Yet another Flash file system,” 2002.
[Online]. Available: http://www.dubeiko.com/development/
FileSystems/YAFFS/HowYaffsWorks.pdf

[22] M. Rosenblum, “The Design and Implementation of a
Log-structured File System,” Ph.D. dissertation, EECS
Department, University of California, Berkeley, Jun
1992. [Online]. Available: http://www.eecs.berkeley.edu/Pubs/
TechRpts/1992/6267.html

[23] J. Gray and A. Reuter, Transaction processing: concepts and
techniques. Morgan Kaufmann, 1993.


